

Heat exchanger gas units – service training

Federico Cortelazzo Dariusz Przygocki Barbara Kowalczyk 1st 3rd March 2022

🕝 SYSTEMA

Training agenda 1st March 2022

- 1. Basic information about HEGU + vocabulary
- 2. Signals on motherboard & wiring diagram
- 3. Control panel operating (tutorial)
- 4. Improvements & retrofit
- 5. GHEU's operating cycles
- 6. Commissioning- (Pre-commissioning + Start-up + Hi/Lo power flow procedure)
- 7. Gas valve adjustment
- 8. Replacement gas valves & electrodes
- 9. Alarms (tutorial)
- 10. Maintenance plan
- 11. Communication between Climatic & HEGU

Training agenda 1st March 2022

Devision into 2 groups

Team leaders: Boussad Trainner: Darek

ERIC Federico

Topics: Preparation for commissioning Start-up Hi/ Lo procedurę Control panel operating / Ignition test / Alarms Replacement of electrodes, valve Burner disassembing & assembling

Heat exchanger gas units portfolio (G-20/ G-25)

Model	EOLO LXC 50	EOLO LXD 70	EOLO LXE 90	EOLO LXE+ 110	EOLO LXF 130	EOLO LXG 170	EOLO LXH 230
Cat. No. (S)	70LENX1000	70LENX1001	70LENX1002	70LENX1003	70LENX1004	70LENX1005	70LENX1006
LGL France Goods	E BALTIC C BOX	E BALTIC D BOX	E BALTIC E BOX	E BALTIC E' BOX	E BALTIC F BOX	E BALTIC G BOX	E BATLIC H BOX
Cat. No. (Longvic)	4380816E	4380817F	4380818H	4380822M	4380819J	4380820K	4380821L
Cat. No (Burgos)	5006181	5006182	5006183	5006210	Х	х	Х
Nominal heat input	50 kW	70 kW	90 kW	110 kW	130 kW	170 kW	230 kW
Airflow min./max.	4 200 / 6 900	7 100 / 11 000	13 500 / 16 000	20 500 / 16 000	15 000/ 23 000	26 000/ 28 000	33 000 / 35 000

Heat exchanger gas units portfolio (G-31)

Model	EOLO LXC 50	EOLO LXD 70	EOLO LXE 90	
Cat. No. (S)	Cat. No. (S) 70LENX0120		70LENX0122	
LGL France Goods	E BALTIC C BOX E BALTIC D BOX		E BALTIC E BOX	
Cat. No. (Longvic)	61298512	61299199	61299200	
Nominal heat input	50 kW	70 kW	90 kW	
Airflow min./max.	4 200 / 6 900	7 100 / 11 000	13 500 / 16 000	

Eeach units has it own serial number

Name plate

- 1. Type of unit EOLO LXC 50 (E Baltic C box)
- 2. Serial no. L21B11084
- 3. CE sign & Certificate name
- 4. Type of gas
- 5. Nominal heat input & output
- 6. Country destination: France
- 7. Language: Frensh or Spanish or English or

SYSTEMA POLSKA Sp. z o.o. ul. Długa 5, 98-220 Zduńska Wola www.systemapolska.pl						
Condensing gas	unit	Year		c c 21		
Serial number L21	311084	2021		۲۲ <mark>14</mark> 50		
Туре ЕОСС	DLXC 50	Destination		FRANCE		
Certificate GAR14	50DL0004	Category II 2E			2Esi3P	
Nominal heat input (Hi) [kW]	50	Туре		B23		
Nominal heat output [kW]	47					
Type of gas		G20	G25	G31		
Gas inlet pressure	kPa	2,0	2,0	3,7		
Nominal consumption	kg/h			3,57		
	m³/h	5,29	6,15			
Electrical supply	V/Hz	2/PE 50Hz/400V		Protectio	n IP00	
Max. eletrical power	W	72		Class NOx	5	
Device adjusted for: Gas G20 2 kPa						

Heat exchanger gas unit (E Baltic D box)

- 1. Plate heat exchanger
- 2. Mounting plate
- 3. Control box
- 4. Burner unit
- 5, 6. Sensor temp. cover + 7, 8, 9,10 Temp. sensors
- 11. Insulation gasket
- 12. Pneumatic elbow
- 13. Elbow
- 14. Transformer
- 15. Internal combustion chamber
- 16. Measure point of pressostat
- 17,18,19, 20 exhaust pipes set

Heat exchanger gas unit (E baltic D box

- 1. Plate heat exchanger (place, where gas is burned, surface phe heats air flow)
- 2. Mounting plate (place, where whole components are fix together)
- 3. Control box (set of controllers with opportunity to connect with Climatic, Control panel, connection with necessary components)
- 4. Burner unit (gas combustion in phe)
- 5-10. Temp. sensors with covers (measures temp. on the Surface of phe)
- 11. Insulation gasket
- 12. Pneumatic elbow
- 13. Elbow
- 14. Transformer (voltage convertion from 400 V to 230V ERT Kr (on wring diagram))
- 15. Internal combustion chamber (deacreasing Surface of phe)
- 16. Pipe
- 17,18,19, 20 exhaust pipes set (place of exhaust outlet)

Burner units – model E Baltic C, D, E box

Burner units – model E Baltic F, G, H box

Burner unit – model E Baltic D box

- 1. Burner flange
- 2,3 Insulation plate
- 4. Burner head
- 5. Electrodes set
- 7. Gas blower
- 8. Gas-air mixer
- 9. Gas valve
- 10. Flexible gas pipe
- 12. Hi voltage transformer
- 15. Gas blower control cable
- 18. Gas blower wiring supply

Burner unit – model E Baltic D box

- 1. Burner flange
- 2,3 Insulation
- 4. Burner head (proper streading of gas & air mixture)
- 5. Electrodes set (ignition)
- 7. Gas blower (supply gas and air mixture)
- 8. Gas-air mixer (mix gas & air)
- 9. Gas valve (control gas valume in burner)
- 10. Flexible gas pipe (connection with main gas supply)
- 12. Hi voltage transformer (provide ingition)
- 15. Gas blower control cable (management modulation of burner & rotation speed)
- 8. Gas blower wiring supply

Burner unit – E baltic H box

- 1. Burner flange
- 2,3 Insulation
- 4. Burner head
- 5. Electrodes set
- 6. Gas blower
- 7. Gas-air mixer
- 9. Gas valve

11 & 19 Gas pressure switch

- 13. Flexible gas pipe
- 15. Hi voltage transformer

Control box – the same for the all modules

4. Matherboard (main electronic board)

5. Burner controller GENIUS M82/ Brahma (*management burner & control operating*)

- 6. Air pressure switch
- 7. Safety thermostat (Klikson, overheating)

12. Communication plate (communicate components with motherboard and Climatic)

Control box – common for each modules

32. Motherboard

34 – 36 Red lamp, Green lamp, Orange lamp

37.Air flow pressure swich* (not use by Lennox)

38. 4 pin adapter (valid for all units from serial no: L21G11320)

41. Reset buton

43. Communication plate

44. Programming button

Technical documentation

- 1. Instruction Operation Manual (English, French, Spanish, Polish)
- 2. Spare parts list
- 3. Leaflet
- 4. PPT presentation
- 5. Commissioning diagram & tutorial
- 6. Hi/Lo procedure diagram & tutorial

IOM in English, French, Spanish, Polish

Volume of buffer tank (between burner & regulation value or reducer)

Model	EOLO LXC	EOLO LXD	EOLO LXE	EOLO LXE+	EOLO LXF	EOLO LXG	EOLO LXH
Capacity in kW	50	70	90	110	130	170	230
Volume in m3	0,02	0,031	0,039	0,048	0,056	0,065	0,095

PLS ADD THE WHOLE PIPES OF GAS

HEGU – improvements & retrofit

HEGU – Improvements & retrofit

Electrodes from double to single – 2 pcs. For C, D, E, E+ From serial no: L21G11320

HEGU – improvements & retrofit

New burner Controller (Genious 821-TW30 is replecement by Brahma 500015521-32505) from serial no. L22B11503

HEGU – improvements & retrofit

Place of programming buton & reset buton form serial no. L22B11505

HEGU – Retrofit

1. New burner controller Brahma instead of Genius

- 2. New type of electrodes 2 x single instead of one double (use repair kits)
- 3. New shape of electrodes

Heat exchanger gas unit – SIGNAL

Main Control board SCP674V130B1

The same communication board for each models

Signals on the dispaly

Heat exchanger gas unit – Phases

Reset burner

No command to heat

No command to operation Post ventilation mode Level of burner [%]

Test mode

Testing fase

Combustion chamber Waiting time

pre-ventillation

Pasword to enter Y2/YC/Yt service mode burner operation according to Yc / Yt parameters

Max. & min. setting

Time of operation at Yc level

Motherboaed checking & settings

- PA parameter introducting changes
- 33 code for manual mode

Modifiable parameters:

Y2 – Burner modulation power in % fom 0 ...99, default 20

Burner operation parameter – MOI point 4.6, page 30, 31

68

HH

Motherboaed checking & settings

rL – min burner fan speed value

ro – offest of rL during standard operation

rH – max. burner fan speed value

Y2 – boost level

Y9 – gas blower type

HH- release firmware

Non modifiable burner parameters (read only) !!!

Parameter Y2 - changes

button

- 1. Press button until PA appears
- 2. After realeasing button, the value 00 appears
- 3. Press button again to enter code 33 (manual operations)
- 4. Wait 3 s without doing nothing
- 5. You are in service mode during 4 minutes
- 6. Press and hold button until display shows Y2 and release the button

Smart Energy Company

www.systemapolska.pl

7. Press button again to modify Y2 (from 0 - 99)

Cod	Parameters	Range	UM	Def
PA	Password to change Y2 , YC , Yt . → 33	099	-	-
Y2	Power of the PWM burner during pre-ignition. 0% = <i>rL</i> ; 99% = <i>rH</i> ;	099	%	20
YC	Start the test phase of the burner	099	-	0
Yt	YC duration	120	min	1
rL	Minimum value of the fan speed. (READ ONLY) <i>rL</i> it is a functional value, it is not a safety limit.	0 <i>rH</i>	%	18-20
ro	Offset of <i>rL</i> during the standard functioning of the device. (READ ONLY).	060	%	0
rH	Maximum value of the fan speed. (READ ONLY) <i>rH</i> it is a functional value, it is not a safety limit.	rL 99	%	99
Y9	Type of blower. 1 = RG148 D-Box / E-Box; NRG 137 F- Box, RG175 G-Box; 2 = NRG118; C-Box 3 = G1G 170; H-Box 4 , 5 , 6 , 7 , = not used in Lennox devices	18	-	-

Model C

Nominal heat input – 50 kW Min. heat input 10 kW

Signs

00 – 10 kW 99 – 50 kW

Example on E Baltic C box

8	99	"00" [kW]	"99" [kW]
EOLO LXC 50	C-BOX	10	50
EOLO LXD 70	D-BOX	14	70
EOLO LXE 90	E-BOX	18	90
EOLO LXE+ 110	E+ BOX	22	110
EOLO LXF 130	F-BOX	26	130
EOLO LXG 170	G-BOX	34	170
EOLO LXH 230	H-BOX	46	230

Control panel operating

 External control panel for Receiving information Resseting alarms Managing & Control HEGU

2. The name of alarms are not the same as alarms on Motherboard's display

Control box –wiring diagram

Fig. 3.1 Wiring diagram

Control box – Main board

J8F – Gas blower control
E7 / E5 / E6 error
J6B – Kr resistance kit relay power supply
J7B a – min. gas pressure switch (option)
J7B b – Air pressure switch
J7C c - Safety thermostat connection
J7C d – Max. gas pressure switch (option)

KEY – Programming buton connector iFS – Copying parameters port CN1, CN2 – SCP674V202MB slave board connector
🕝 SYSTEMA

Control box – Main board

Control box –communication plate

Control box –wiring diagram

Control box –wiring diagram

Control box –wiring diagram

🕝 SYSTEMA

Gas unit EOLO LX can be started by ModBus communication or manualy – close connector **J5 contacts 1-2.**

Gas heater will start to work only when the **main fans are running**. Otherwise, the module will display an **E3** error.

In correct conditions gas unit will perform a startup cycle.. First symbol to appear on display is the **initial phase** (5-10 sec)

The next testing fase starts after (20-30 sec.)

Gas heat exchanger unit - operating cycles

Gas heat exchanger unit - operating cycles

oIJ

After testing fase burner goes to pre-purging fase. (30 sec.)

Orange lamp ON

The next step - open gas valve and apply high voltage to the

electrodes.

Green lamp ON

Spark starts

Gas heat exchanger unit - operating cycles

After successful ignition burner continues

After a successful ignition burner continues boost phase

for 3 minutes, i.e. work with starting power.

then, after approx. 3 minutes, the burner switches to normal operation and displays the percentage power level between 0-99

Gas heat exchanger unit - operating cycles

0

if the burner did not start, it makes two more attempts to start.

After third unsuccessful attempt, the burner locks.

Red lamp ON

Error E4 on the display

Country	Sign	Category	Pressure	Country	Sign	Category	Pressure		
Albania	AL	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Luxembourg	LU	I _{2E}	G20=20 mbar		
Austria	AT	I _{2H3B/P}	G20=20 mbar G30/G31=50 mbar	Macedonia	МК	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Belgium	BE	l _{2E(R)}	G20/G25=20/25 mbar	Malta	MT	I _{3BP}	G30/G31=30mbar		
Belgium	BE	l _{3P}	G31=37 mbar	Norway	NO	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Bulgaria	BG	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Netherlands	NL	I _{3BP}	G30/G31=30 mbar		
Cyprus	CY	II _{2H3P}	G20=20 mbar G31=37 mbar	Poland	PL	II_ 2ELwLs3PB/P	G20/G27=20 mbar G2.350=13 mbar G30/G31=37 mbar		
Cyprus	CY	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Portugal	PT	II _{2H3P}	G20=20 mbar G31=37 mbar		
Croatia	HR	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	UK	GB	II _{2H3P}	G20=20 mbar G31=37 mbar		
Denmark	DK	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Czech Repu- blic	CZ	II _{2H3P}	G20=20 mbar G30/G31=28-30/37 mbar		
Estonia	EE	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Romania	RO	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Finland	FI	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Romania	RO	II _{2L3B/P}	G25=20 mbar G30/G31=30 mbar		
France	FR	II _{2ESi3P}	G20/G25=20/25 mbar G30/G31=28-30/37mbar	Slovakia	SK	II _{2H3P}	G20=20 mbar G31=37 mbar		
Germany	DE	II _{2ELL3B/P}	G20=20 mbar G25=20 mbar G30/G31=50 mbar	Slovakia	SK	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Greece	GR	II _{2H3P}	G20=20 mbar G31=37 mbar	Slovenia	SI	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Greece	GR	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Slovenia	SI	II _{2H3P}	G20=20 mbar G31=37 mbar		
Ireland	IE	II _{2H3P}	G20=20 mbar G31=/37 mbar	Spain	ES	II _{2H3P}	G20=20 mbar G31=/37 mbar		
Iceland	IS	I _{3BIP}	G30/G31=30 mbar	Sweden	SE	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Italy	Π	II _{2H3P}	G20=20 mbar G31=37 mbar	Switzerland	СН	II _{2H3P}	G20=20 mbar G31=37 mbar		
Latvia	LV	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Turkey	TR	II _{2H3P}	G20=20 mbar G31=/37 mbar		
Lithuania	LT	II _{2H3P}	G20=20 mbar G31=37 mbar	Turkey	TR	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar		
Lithuania	LT	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Hungary	HU	I _{2HSB/P}	G20= 25 mbar G30/G31=30 mbar		

Pre commissioning action

Make sure the gas in the mains corresponds to that for which EOLO LX is regulated – Gas pressure & type comply with the data on name plate

Check, with the pressure intake "IN" on the gas valve, that pressure entering the valve corresponds to that required for the type of gas being used.

Purge the gas pipe

Check tightness of gas system

Check Correctness of electrical connection / Voltage value,

Check that efficient earthing connections have been completed, carried out as specified by current safety regulations

Smart Energy Company www.systemapolska.pl

Tabele 5.1, page 44

Pre commissioning action

- 1. Check the filter (3)
- 2. Open shut-off main gas valve (1)
- 3. Pre-purge gas pipe from air
- 4. Check tightness by tester
- 5. Turn on the main electrical power swich

1- shut-off valve, 2. checking point 3. filter, 4manometer, 5. gas regulator, 6. manometer, 13. checking point

Heat exchanger gas unit – Commissioning

View of heat exchanger gas unit – E Baltic C box

Commissioning procedure – start-up

Gas valve adjustment= Hi / Lo procedure

Preparation:

- 1. Check type of module
- 2. Find the table in IOM, page 61
- 3. Prepare combustion analyser
- 4. Use HEX 4 or Torx 25 for making adjustment

Make pressure adjustment just after starting the burner

HEGU – procedure to put in Lo/Hi power

Necessary tools for regulation Hex 4 or T25 / T40

Procedure Lo/Hi power flow

- 1. The procedure is set to has gas valve
- Use off set regulator (or gas air mixer for E, E+, F) for Lo power flow
- 3. Use internal valve screw
- 4. Gas valve is set to manual mode for 6 minutes
- 5. Enter code 61 and adjust gas valve to max. power flow
- 6. Enter code 51 and make adjustment gas valve for min. power flow

HEGU – procedure to put in Lo/Hi power

The main codes necessary for using during procedure

Procedure to put in Lo/Hi power

- 1. Model C & D VK4205VE5002
- 2. Model E, E+ & F VK 4415V1002B
- 3. Model G & H -VR415VE50924

Model C & D Model E, E+ &F

+ &F Model G &H

HEGU – procedure to put in Lo/Hi power

The targeted parameters G20 : CO2 8,7%; λ 1.35;

HEGU – procedure to put in Hi/Lo power

HEGU – procedure to put in Lo/Hi power

The procedure should be carried out after the burner has just started

Supply pressure in countries

Country	Sign	Category	Pressure	Country	Sign	Category	Pressure	
Albania	AL	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Luxembourg	LU	l _{2E}	G20=20 mbar	
Austria	AT	I _{2НЗВ/Р}	G20=20 mbar G30/G31=50 mbar	Macedonia	MK	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	
Belgium	BE	l _{2E(R)}	G20/G25=20/25 mbar	Malta	MT	l _{3B/P}	G30/G31=30mbar	
Belgium	BE	l _{3P}	G31=37 mbar	Norway	NO	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	
Bulgaria	BG	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Netherlands	NL	I _{3B/P}	G30/G31=30 mbar	
Cyprus	CY	II _{2H3P}	G20=20 mbar G31=37 mbar	Poland	PL	II _{2ELwLs3PB/P}	G20/G27=20 mbar G2.350=13 mbar G30/G31=37 mbar	
Cyprus	CY	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Portugal	PT	II _{2H3P}	G20=20 mbar G31=37 mbar	
Croatia	HR	П _{2НЗВ/Р}	G20=20 mbar G30/G31=30 mbar	UK	GB	II _{2H3P}	G20=20 mbar G31=37 mbar	
Denmark	DK	II _{2H3B/P}	G20=20 mbar G30/G31=30 mbar	Czech Repu- blic	CZ	II _{2H3P}	G20=20 mbar G30/G31=28-30/37 mbar	

Tabele 5.1, page 44

🕝 SYSTEMA

Any changes in HEGU

- 2. Check if is necessary to replace venturi. It is valid for Poland
- 3. Make calibration, if the gas valve is out of control

Replacement venturi, if it is necessary (mainly Poland)

Heat exchanger gas unit parameters – IOM page 60

Models			C box		D box		E box		E+ box		F box	
Gas	Parameters	Unit	max	min	max	min	max	min	max	min	max	min
G 20	Exhoust gas T	°C	170	43	112	28	137	34	145	39	132	39
	CO ₂	%	8,7	8,6	8,5	8,6	8,6	8,7	8,7	8,9	8,7	8,6
	NO _x	ppm	37	20	29	32	29	26	34	22	30	21
G 25	Exhoust gas T	°C	165	39	110	28	135	34	140	39	133	38
	CO ₂	%	8,7	8,5	8,6	8,5	8,5	8,6	8,7	8,7	8,7	8,5
	NOx	ppm	37	20	29	32	29	26	34	22	30	21
G31	Exhoust T	°C	175	42	111	28	140	35	145	39	132	39
	CO ₂	%	10,3	10,4	10,3	10,3	10,2	10,4	10,3	10,4	10,3	10,2
	NOx	ppm	40	28	32	31	32	29	37	25	33	24

Gas valve calibration

Based on E Baltic C box – IOM – page 62

Module C – G20, 20 mbar, min/max. $CO_2 - 7,8 - 8,9\%$

Replacement gas valve (tutorial)

68

HH

Motherboaed checking & settings

rL – min burner fan speed value

ro – offest of rL during standard operation

rH – max. burner fan speed value

Y2 – boost level

Y9 – gas blower type

HH- release firmware

Non modifiable burner parameters (read only) !!!

Parameter Y2 - changes

button

- 1. Press button until PA appears
- 2. After realeasing button, the value 00 appears
- 3. Press button again to enter code 33 (manual operations)
- 4. Wait 3 s without doing nothing
- 5. You are in service mode during 4 minutes
- 6. Press and hold button until display shows Y2 and release the button

Smart Energy Company

www.systemapolska.pl

7. Press button again to modify Y2 (from 0 - 99)

Replacement electrodes – standard procedure (tutorial)

Burner – electrode change in module C, D, E, E+

From serial no: L21G11320

3 repair kits burner with index no. 70LXPAL0023-0025 (C, D, E)

Remove burner unit from heat exchanger gas unit

Remove the insulation gasket & Unscrew 4 nuts

Remove burner plate & install the repair kits burner

Screw 4 nuts & Install the insulation gasket

Heat exchanger gas unit – Maintenance

Install the burner unit with new electrode set to heat exchanger gas unit

Heat exchanger gas unit – Troubleshooting

Display of motherboard	Control Panel	Reason	Solution
E2	A19	Lack of air flow	Check fan air flow & fan rotational speed
E3	A18	Overheating	Reset the burner
E4	A17	Burner is blocked	1. Make gas valve regulation 2. Change electrodes
E5 / E6	-	Lack of connection control wire with	1. Connect 2. Turn-off and turn-on units
E8	A41	Heat exchanger is overheated	Decrease level of burner operating and wait
E9	-	Burner is blocked for long time period	Make double reset

Heat exchanger gas unit – Troubleshooting

Display of Motherboard	Control Panel	Reason	Solution	Notes
E2	A19	Lack of air flow	Check fan air flow & fan ratation speed	Air switch
E3	A18	Overheating of he	Reset burner	probe
E4	A17	Burner is blocked	 Valve regulation, Replace electrodes 	Valve, electrodes
E5/E6	-	Lack of connection control wiring	 Connect Turn-off & turn on units 	Blower, blower wiring supply
E8	A41	HE is overheated	Deacrease level of burner operating and wait	Heat exchanger
E9	-	Burner is blocked for some period	Make double reset	E4

Alarm

Main electronic board is disconnected with communication board

Solution

Check that the communication board is fitted correctly

Alarm

General / contact J7B is opened (min. gas pressure switch Pg / Air pressure switch)

Solution

Check the required gas pressure, check circuit of J7B contact

Alarms & solutions

Alarm (Happend or in progres) Contact J7C is open. Max. gas pressure switch is open or overheat thermostat is opened (Klikson)

Solution Check gas pressure Pushs reset on overheat thermostat (Klikson)

Alarm Burner is lockouted. The red light is on.

Solution Pushs reset buttom during 3 s

Reason	Solution
Power supply reversed between phase and neutral	Connect correctly & respect the phase and neutral polarity
Lack of gas in the burner	Check the gas suply line
Wrong type of gas	 Check , if the type of gas complies with the gas on name plate If not, adjust the unit to the proper one by regulation valve & Hi/Lo procedurę
Wrong gas pressure	 Check the pressure with the valve shown on name plate Performe gas valve adjustment (MOI 60-66) – procedure Hi/Lo

	Reason	Solution	
	Ignition electrode(s) are incorrectly positioned or damaged or out of working	 Electrodes are installed incorrectly, improve it (see drawing in MOI page 57 Replace them with original spare parts. Note! Use the same type of elctrodes for box F, G, H and for C, D, E, E+ with serial no higher than L21G11320. For modules C, D, E, E+ with lower serial no – use repair kit burner Replace the ground electrode conector (wire yellow-green) with the ignition electrode connector (red wire) 	
	Ignitor broken	If it is spark issue and / or replace with the original spare parts (see above point)	

Reason	Solution
Poor grounding	Check the grounding
Burner controller faulty	Check burner controller corect operation and / or replace it
Gas valve does not work	 Check the way of operation the gas supply on the valve, replace with the orginal one, if it is necessary Main board faulty replace with original spare parts Check the operation of gas valve coils and replace with
	original one4. Check the operation of control unit, replace withoriginal one if necessary

Reason	Solution
Power supply reversed between phase and neutral	Connect correctly & respect the phase and neutral polarity
Lack of gas in the burner	Check the gas suply line
Wrong type of gas	 Check , if the type of gas complies with the gas on name plate If not, adjust the unit to the proper one by regulation valve & Hi/Lo procedurę
Wrong gas pressure	 Check the pressure with the valve shown on name plate Performe gas valve adjustment (MOI 60-66) – procedure Hi/Lo

Alarm

To low min. speed of gas blower, than burner switchs off

Solution

Check connection of gas blower control Check parameter Y9 on the mainboard

Alarms & solutions

Reason	Solution	
wrong connection of controling gas blower	Check wire, plug & conectors (J8F)	
Gas blower control cable dameged		
Gas blower defectives	Replace with original spare part if necessary	
Motherboard defective		
Wrong parameters Y9 on motherboard	Check and/or set Y9 parameter: Box D, E, E+, F, G Y9 = 1 Box C $-$ Y9-2 Box H $-$ Y9= 3	

Alarm

Error of high speed of gas blower, than burner switchs off

Solution

Check connection of gas blower control Check parameter Y9 on the mainboard

Alarms & solutions

85	
	Reaso

Reason	Solution	
Wrong connection of controling gas blower	Check wire, plug & conectors (J8F)	
Gas blower control cable dameged		
Gas blower defectives	Replace with original spare part if necessary	
Motherboard defective		
Wrong parameters Y9 on motherboard	Check and/or set Y9 parameter: Box D, E, E+, F, G Y9 = 1 Box C $-$ Y9-2 Box H $-$ Y9= 3	

Alarm Start-up test failed, burner locks out

Solution Remove & restore power to the board

Alarm

To high temperature of heat exchanger surface - probe P1 (PT1000)

Solution

Wait for decreasing temperature using fans in operating. Change sensor (damage)

Alarm

Red & green lamps is lighting at the same time Internal error

Solution Closes RT contact

Alarm Serious alarm, damaged database

Solution Contacts the service center Checks the value: rL, rH & Y9 After introducing the new parameters provided by producer, turns off the power supply of the board at least 10 s.

Alarm Memory fault - EEPROM

Solution Switch off power supply for 10s. Restore software of main board and communication board

Heat exchanger gas unit – maintenance plan

	MAINTENANCE INTERVAL			
	Maintenance	Every year		
1	Check / clean gas filter	x		
2	Check the gas pressure supply at the gas valve.	x		
3	Check flue exhaust + air intake grill	X		
4	Check the Venturi pipe / clean it if necessary	x		
5	Check exchanger / clean it if necessary.	Х		
6	Check burner head / clean it if necessary.	x		
7	Check electrodes / clean it if necessary.	x		
8	Check and clean condensate drain.	x		
9	Check operation of flame	x		
10	Check the safety thermostat	X		

Gas heat exchanger unit – maintenance plan

1. Check / clean gas filter

Perform a visual inspection and clean the gas filter cartridge which is located outside the device behind the main gas valve

Check the gas pressure supply at the gas valve.
 Measure the gas pressure with a pressure gauge. The measuring point is at the inlet to the gas valve

3. Check flue exhaust + air intake grillVisually inspect where possible. Check the status of the ducts. Remove dust and any obstruction on the air intake.

Gas heat exchanger unit – maintenance plan

4. Check the Venturi pipe / clean it if necessaryRemove any dirt at the mouth of the Venturi pipe with a brush.Be careful to not let it fall inside the piece.

5. Check burner head / clean it if necessary.Remove any dirt from perforated surface with a brush. Check the condition of the head.

6. Check electrodes / clean it.

Use fine sandpaper to clean the electrode core

Gas heat exchanger unit – maintenance plan

7. Check and clean condensate drain.

Remove any dirt from the pipe. Check if condensate flow out freely form the exchanger.

8. Check operation of flame and ionisation controling.

When the burner is working, close the gas valve and verify that the burner is stopped. After 3th spark start alarm display E4. Reopen the gas valve, reset the alarm and wait for the burner to restart.

9. Check the safety thermostat

This procedure must be done under power supply. (use isolated tool) Carefully remove the fast-on from the safety thermostat, the alarm E3 must appear on the display. Then push RESET 3sec. for to cancel the alarm

THANK YOU FOR ATTENTION

Control box –wiring diagram

Control box –wiring diagram

